The problem	State of the art	Proposed approach	Achieved results

Combined Radiology and Pathology Classification of Brain Tumors

Rozpoznanie guza mózgu na podstawie obrazu radiologicznego i patologicznego

Piotr Giedziun

Supervisor: dr hab. inż. Henryk Maciejewski

4 March 2016

The problem	State of the art	Proposed approach	Achieved results

Outline

1 The problem

2 State of the art

3 Proposed approach

4 Achieved results

The problem	State of the art	Proposed approach	Achieved results
00000			

Definitions

Cancer

Cancer occurs when abnormal cells grow out of control

Brain tumor

- Benign or Malignant
- Over time, a low-grade tumor can become a high-grade tumor
- Brain tumors are classified as grade I, grade II, or grade III, or grade IV

The problem	State of the art	Proposed approach	Achieved results
00000			

Brain tumor - Survival rate (5 years or more)

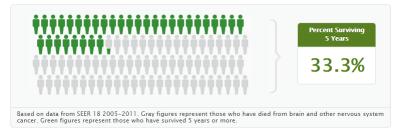


FIGURE - Based on data from SEER 18 2005-2011, cancer.gov

000000		000000000	000
00000	00	0000000000	000
The problem	State of the art	Proposed approach	Achieved results

Brain tumor - Survival by stage

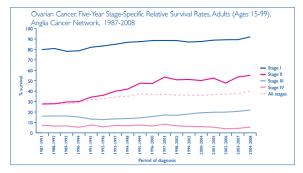
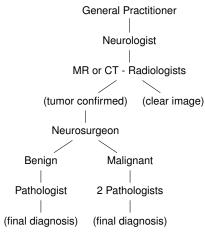



FIGURE – Ovarian cancer, Five-year stage-specific relative survival rates, adults (ages 15-99), Anglia Cancer Network, 1987-2008

The problem	State of the art	Proposed approach	Achieved results
000000			

Brain tumor - Diagnosis process

Diagnosis problems

Problems

- Diverse shapes, sizes and appearances of tumors
- Relies on histopathologic examination (biopsy examination)
- Waiting for tests and to start treatment
- Radiology imaging is used only to establish location, size and whether it is benign and malignant tumor

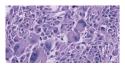


FIGURE - Glioblastoma cells

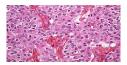


FIGURE - Oligodendroglioma cells

Diagnosis problems

Problems

- Diverse shapes, sizes and appearances of tumors
- Relies on histopathologic examination (biopsy examination)
- Waiting for tests and to start treatment
- Radiology imaging is used only to establish location, size and whether it is benign and malignant tumor

Targets in the UK

No more than 2 months wait between the date the hospital receives an urgent GP referral for suspected cancer and starting treatment

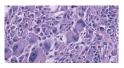


FIGURE - Glioblastoma cells

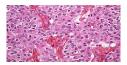


FIGURE - Oligodendroglioma cells

Aims & Limitations

Aims

- Research & build a segmentation mechanism for the MRI scans (ROI selection)
- Research & build a classifier based on the segmented radiological images
- (if possible) Combine the Pathology-based classification with radiology-based classifier

Limitations

- Limited access to the MRI samples with the diadnosis provided by the doctor
- Conservative environment only non-black box models

The problem	State of the art	Proposed approach	Achieved results
	0		

Related work

Brain tumor segmentation

- The topic of brain segmentation is relatively popular thanks to BraTS challenge
- Several supervised and unsupervised algorithms were proposed
 - Random Decision Forest that classifies voxels
 - Fuzzy C-means clustering
 - Mean Shift and K-means clustering

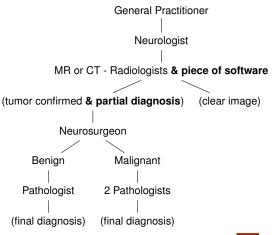
Brain tumor classification

- Slightly less popular subject (current diagnosis fully rely on histopathology imaging)
- Feature extraction
 - Extraction of structure information
 - Feature selection
- GLCM (Gray-Level Co-occurrence Matrix)

The problem	State of the art	Proposed approach	Achieved results
	0		

Influential articles

Nitish Zulpe and Vrushsen Pawar GLCM Textural Features for Brain Tumor International Journal of Computer Science, 2012


Hassan Khotanlou, Olivier Colliot, and Isabelle Bloch Automatic brain tumor segmentation using symmetry analysis and deformable models

Nationale Superieure des Telecommunications, 2007

The problem	State of the art	Proposed approach	Achieved results
		000000000	

Brain tumor - Modified diagnosis process

The problem	State of the art	Proposed approach	Achieved results

Data set

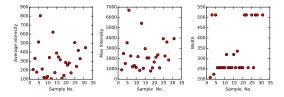


FIGURE - Plots of different attributes of the data set

FIGURE - Viewing angles of MRI scan

The problem	State of the art	Proposed approach	Achieved results

Data set

Summary

- 27 cases with lower grade glioma tumors
- 13 of them with Oligodendroglioma and 14 with Astrocytoma
- Each case has 3 or 4 MRI scans (T1, T1C, FLAIR, and T2)
- Provided samples were taken using different hardware

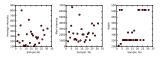


FIGURE - Plots of different attributes of the data set

FIGURE - Viewing angles of MRI scan

The problem	State of the art	Proposed approach	Achieved results
		000000000	

Pre-processing

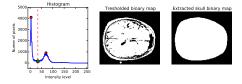


FIGURE - Process of skull extraction

FLAIR skull figure

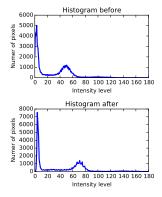


FIGURE - Skulls properties in FLAIR and T2

The problem	State of the art	Proposed approach

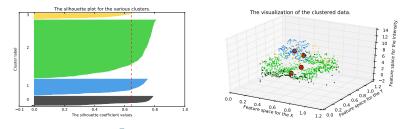
Pre-processing

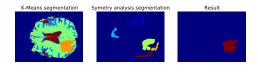
FLAIR after

FIGURE - Median filter effect on image histogram

The problem	State of the art	Proposed approach	Achieved results
		0000000000	

Segmentation - K-Means




FIGURE - Silhouette analysis for K-Means(k=5)

The problem	State of the art	Proposed approach	Achieved results
		0000000000	

Segmentation - Combined

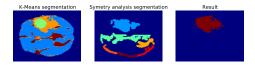
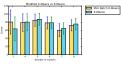
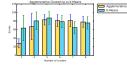
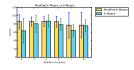



FIGURE - Segmentation with results



The problem	State of the art	Proposed approach	Achieved results
		00000000000	

Segmentation - Alternatives



ring

FIGURE - Agglomerative cluste-

The problem	State of the art	Proposed approach	Achieved results

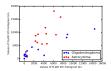
Classification

Tested methods

- Feature extraction & evaluation
- Texture features extraction with Gray-Level Co-Occurrence Matrix
- Texture features extraction with Local Binary Pattern

Classification algorithms

- SVM (Support vector machine)
- Gaussian Naive Bayes
- Logistic Regression
- Random Forest



The problem	State of the art	Proposed approach	Achieved results
		00000000000	

Classification - Feature extraction & evaluation

Selected features (out of 59)

- Tumor volume (in mm³)
- Tumor position (x,y,z) calculated from the middle of the brain
- Metrics intensity of tumor area
- 8 bins of intensity histogram

FIGURE - Selected features extracted from data set

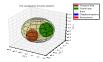


FIGURE – Tumor positional features

The problem	State of the art	Proposed approach	Achieved results
		000000000	

Classification - Texture features extraction with GLCM & LBP

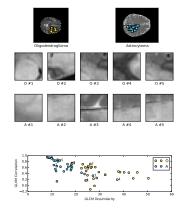


FIGURE - Co-occurence matrix features for Oligodendroglioma and Astrocytoma

The problem	State of the art	Proposed approach	Achieved results ●OO

Radiology imaging

Tumor segmentation		
METHOD	BEST SCORE	
Mini Batch K-Means (5 clusters) 89.027% (std : 5.408)		
K-Means (5 clusters)	88.168% (std : 5.264)	
K-Means with position (5 clusters)	86.026% (std : 5.282)	
Agglomerative Clustering	88.956% (std : 10.632)	

Cancer classification		
METHOD	BEST SCORE	
Random Forest Classifier 87.000% (std		
Logistic Regression	81.297% (std : 5.744)	
Logistic Regression (texture)	68.285% (std: 0.082)	

The problem	State of the art	Proposed approach	Achieved results
			000

Combined Radiology and Pathology

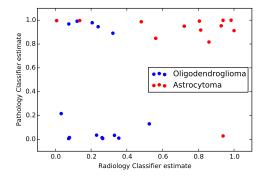


FIGURE – Comparison of Pathology and Radiology results (average estimations of Oligodendroglioma cancer for each sample)

The problem	State of the art	Proposed approach	Achieved results
			000

Results

Conclusion

- Random Forest classifier validated with k-fold cross validation had average accuracy of 87.0%
- Pre-processing of the input data is a hand-crafted process, that had to be performed
- K-Means had the best score out of Mini Batch K-Means, K-Means with modified input vector (with position), and Agglomerative clustering

The problem	State of the art	Proposed approach	Achieved results

Combined Radiology and Pathology Classification of Brain Tumors

Rozpoznanie guza mózgu na podstawie obrazu radiologicznego i patologicznego

Piotr Giedziun

Supervisor: dr hab. inż. Henryk Maciejewski

4 March 2016

